SSC-N-634

A STANDARD FOR THE SMEAR

M. A. FURMAN AND S. G. PEGGS
SSC Central Design Group*
¢/o Lawrence Berkeley Laboratory
Berkeley, CA 94720
April 1st, 1989

ABSTRACT

We present a notation for “smear” that makes its definition clear
and unambiguous. Instead of proposing a unique definition, we de-
fine and recommend the concept of the “smear of a function,” S(f )s
and allow individual researchers to freely choose the function f. The
notation is clear enough that it allows to easily compare results for
the smear of different functions. We also recommend that, for more
detailed comparisons, authors also compute the five basic statisti-
cal quantities of the distribution. We collect all definitions of smear
presently in use, expressed in our notation, and compare them. Fi-
nally, we present a new definition which we suggest be used as a
standard of comparison among different calculations and/or experi-
ments.

* Operated by the Universities Research Association, Inc. for the U. S. Department of Energy.



1. Introduction

The advent of large circular accelerators (.21 has brought forward a new
consideration in their design: because of their large size, economic reasons force
the use of superconducting magnets of small bore. By their nature, these magnets
have relatively large magnetic field nonlinearities which cause nonlinearities in the
dynamics. Ideally, the motion of the particles should be as linear as possible in
order to ensure the predictability of their behavior and therefore the operational
reliability of the machine. The larger the size of the bore, the more linear the
particle dynamics, but the more expensive the machine. Too small a bore, and
the machine is unreliable. Therefore, economic reasons impose the necessity to
tolerate a certain amount of nonlinearity in the particle motion.

One way to quantify the deviation from linearity in the particle motion is
to measure or calculate the linear invariants turn by turn. The deviation from
constancy therefore provides a measure of the nonlinearity. A quantity that

measures the size of this deviationl! has been called the “smear.” At present,
however, there are so many definitions of smear in use that comparisons between
different experiments and/or calculations has become quite confusing. In this
note we present and recommend a notation that allows a clear definition. Our
recommendation is to adopt the concept of the “smear of a function,” S(f),
defined by Eq. (2.5), rather than to try to define smear itself. In the cases of

interest to us, namely experiments and simulations [4-6] in circular accelerators,
f is usually a function of the amplitudes or the Courant-Snyder invariants. By
appropriately choosing f, we reproduce all “rms—type” smear definitions in use
so far. It is up to each individual to spell out which f she or he is using. While
researchers cannot be forced to use the same definition of smear, at least our
notation is flexible and clear enough that it makes it possible to compare different
calculations and experimental results with relative ease.



2. Basic definitions

Consider the cluster of points in Fig. 1, described by the generic coordinates
v and v. A qualitative definition of the smear of this distribution is: “size of the
cluster divided by its distance from the origin.” In the cases of practical inter-
est to us, the points represent the turn-by-turn measurements of the horizontal
and vertical amplitudes or the Courant-Snyder invariants. If the motion were
perfectly linear and uncoupled, the distribution would reduce to a point, yield-
ing zero smear. If the motion were very nonlinear, the points would be widely
distributed, the smear would be large and its very concept useless as a measure
of first order departure from linearity. Thus we are interested only in reasonably
clustered distributions in the first quadrant.

u

Fig. 1. A sample distribution of points with generic coordinates u and v.

The many definitions of smear in use today have the same qualitative mean-
ing stated above. For example, the generic coordinates u and v might be the
horizontal and vertical particle amplitudes a, and ay measured at some specific
(4]

point in the lattice;"” or they might be the Courant-Snyder invariants 2J; and

2Jy (or the eigen-invariants 2J; and 2J5, if there is linear coupling),[S‘ll] or they

might be linear combinations of the invariants that emphasize or deemphasize
specific coupling resonances,[5] or that emphasize, say, the horizontal size over
the vertical size. In addition, one might choose either “rms” quantities or “max—

min” quantities [8,9.12] to define the size of the distribution. Here we shall focus



on rms quantities only and will collect the max-min definitions of smear in use
in order to recommend a specific notation for each one of them.

A distribution of points is fully specified by an infinite set of moments; in
practice, of course, we want to measure or calculate only one or a few relevant
quantities, depending on the purpose for which they are intended. For example,
comparison between tracking codes, or between simulation and experiment, may
require a more detailed description of the distribution than, say, a specification
of needed magnet quality. In all cases of interest so far, and in the foreseeable
future, the specification of the first five moments of the distribution is quite
sufficient. These are the two averages

a = (u), v = (v) (2.1)

and the three covariances

x(a,p) = {(¢ — 9)(p — D)) = (ap) — (q) (p) (2.2)

where ¢,p = u or v. The average (f(u,v)) of an arbitrary function f(u,v) is
defined by

flu,v) = (f(u,v)) = Zf(ut,vt (2.3)

which 1s a turn-by-turn average in physical applications.

The usual ¢’s and the correlation C are

= VX w), o =X, C=x(uv) (2.4)

Note that the correlation can be positive or negative depending on the overall
orientation of the cluster. Roughly speaking, C' > 0 if it lies along the main
diagonal, C' < 0 if it lies along the second diagonal (as is the case in Fig. 1). In
general, C is in the range —oy,0, < C < 040,.

We define the smear of the function f, S(f), b

x(f, f)
(f)?

which is nothing but the normalized rms of the function.

S(f)* = (2.5)



3. Properties of the smear of a function

A nice property of S(f) is scale invariance, i.e.,

S(Af) = 5(7) (3.1)
where ) is a constant; this means that S(f) is not sensitive to the absolute size
of the distribution.

The smear of a linear function is given in terms of the 5 moments mentioned
above. Thus, for f(u,v) = au + bv + ¢, we obtain

Va*o2 + b2a2 + 2abC
lat + b + ¢|

Slau+bv +¢) = (3.2)

The function f can also be a vector function of u,v, if we adopt the obvious
generalization of the definition of the covariances to be

x(f,g)=((f 1) (g-8)) (3.3)

For example, for r = (u,v), we obtain
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This latter definition of the smear, S(r), is perhaps the one in most straightfor-
ward correspondence with the qualitative definition stated in the Introduction.
The numerator is an obvious measure of the size of the distribution and the de-
nominator an obvious measure of its distance from the origin; it is insensitive to
the orientation and shape of the distribution.

For small-smear distributions it is easy to prove that

(¢*) = (@)* x [1 + O(5%)]

5 o o (3.5)

x(¢°,p%) = 4qp x(q,p) x [1+ O(S5)]
where, again, ¢ and p can be either u or v. Thus one can approximately relate
the five moments and the smear of amplitude distributions to Courant-Snyder
distributions, as we state more explicitly below.



Whatever its definition, the smear must satisfy the important property of
being a first order invariant, 4.e., it must be invariant under translation through
linear elements along the lattice. This requirement ensures that the smear is
approximately independent of the observation point (random nonlinearities cause
relative deviations of O(S) when the smear is measured at different lattice points;
however, nonlinear magnetic elements, such as chromaticity sextupoles, can cause
large relative deviations in the smear in certain regions of the lattice, if the phase
difference between them is appropriate). All definitions presented in the next
section, except Sj, are linear invariants.

4. Collection of smear definitions

In Table 1 below we present a collection of definitions of smear, expressed
with our notation. The Courant-Snyder invariants 2.J;, 2Jy are related to the
lattice functions by 2J, = ,on:’z + 2azzz’ + vy2%, and similarly for 2Jy. The
amplitudes az,ay, which have the advantage of being directly measurable, are
related to the invariants by a; = 1/28;J; (we assume, for simplicity, that they are
measured at a point where a; = ay, = 0). If the motion has linear horizontal-
vertical coupling, the eigen-invariants 2J;, 2J; should normally be used in place

of 2J;, 2Jy; otherwise, the smear does not vanish at zero amplitude.[s] If fis
only a function of Jz, Jy (or Ji, J2), the linear-invariance property is guaranteed.
If f is a function of the amplitudes az, ay, some care is needed. Clearly S(a;)
and S(ay) are linear invariants since the S—function cancels out on account of
the scale invariance propety; however, S(a; + ay) and S(a) are not.



Table 1. RMS smear definitions.

Name Definition Comments
S1 S(a) Ref. [3]
S2 S(az) Ref. [4]
S3 max[S(as), S(ay)] Ref. [7]
Sy 1.56 max([S(az), S(ay)) Ref. [9]
Ss max[S(J,), S(J,)]

Se S(Jz + Jy) Ref. [5]
S7 S(J1+ J2) Ref. [6]
Sg S(J) new

Actually Ref. [3] contains only a descriptive definition of smear, without a
formula; the definition S(a) in the table above corresponds to Alex Chao’s best
recollection of what was then referred to as smear.

We present now the max-min definitions of smear that are in use. In these

formulas A = v/2J, and not \/28J (of course, if B; max = By,max one can take A
to be /20maxJ ). A and A are the maximum and minimum of the distribution,
and the averages are defined by A = (4 + A)/2, and not according to Eq. (2.3).

3 A‘:zZ + A‘yQ

St Ref. [12]

(4.1)

Ref. (8]

The factor % in front of S7. is purely ad hoc; it was included in its definition

as a rough guess to make it agree with S3 in practical applications to the SSC*
(however, read on).

The “10% criterion” for the linear aperture[S] of the SSC was first stated
in print with an explicit formula, to the best of our knowledge, in terms of
5% in Ref. (8], where the linear aperture was defined by St = 0.10. It was then

%« Alex Chao, public confession.



observed empirically, in analytical and tracking studies on a specific SSC lattice, 7
that S = 0.10 corresponds to S3 =~ 0.064. This provided the motivation in
Ref. [9] (where S4 was called Spps) for the factor 1.56 in front of Sy, since
1.56x0.064 = 0.10. Thus the linear aperture criterion can be stated as S = 0.10,
or S3 = 0.064, or S4 = 0.10, or S5 = 0.128 (see below for the explanation of
55 ~ 253).

It should be remarked that the smear is not a statistical quantity; that is to
say, once the set of all nonlinearities for a given machine is fully specified, the
smear, in either of its rms or max—min versions can, in principle, be calculated
analytically to any desired degree of accuracy. In tracking simulations the com-
putation of the smear takes on an apparently statistical character on account of
the finite number of turns used to “measure” it (experience shows, however, that
simulations with as few as 500-1,000 turns yield very accurate values). In this
sense the “rms” qualification can be misleading. In model machines with ran-
dom errors the smear is truly a statistical quantity, since it requires an ensemble
average over an infinite number of machines on top of whatever other calculation
has to be performed for a sample element of the ensemble. For these types of
calculations the rms versions of the smear are the appropriate ones.

5. Comparison among the different definitions

For small-smear distributions one obtains, from Eq. (3.5),

(2J:) ~ (a:)? /i
x(2Ji,27;5) ~ 4aia;x(ai, a;)/(8if;)

fori,5 =z or y. It follows that S(J;) = 25(qa;), and therefore S5 ~ 25j.

For one-dimensional motion there are several relations among the different
definitions. In this case, S; = S = S3 = 54/1.56, S5 = S¢ = S7 = Sg ~ 253, and
St =2 S

For two—dimensional motion there is no direct quantitative comparison among
the several definitions (except S5 =~ 2S53). In particular, the SPS definitions Sg
and S7 are constructed so that they are sensitive to the orientation of the cluster
of points, yielding small values when there is coupling between the horizontal and
vertical planes of motion, or between the eigenplanes, respectively. Thus they
respond in a qualitatively different way to coupling resonances than the other
definitions, all of which respond similarly. As we mentioned above, the relation
ST ~ 1.56 S3 was found empirically for an SSC lattice; it is not meant to be
generally valid, especially under the influence of significant resonances.

(5.1)



A numerical comparison among the different definitions, for specific lattice

. . 13 . .
examples, will be provided elsewhere *®! once this craziness of the move to Texas
is over.

6. Conclusions and recommendations

In conclusion, we recommend that authors:

1. adopt the definition of the smear of a function, Eq. (2.5), and that they

state explicitly their choice of function f, which should be a linear invariant;
and

2. provide the 5 basic moments of the quantities that appear in f; for example,
users of S5 ought to state the values of (Jz), (Jy), x(Jz, Jz), x(Jy, Jy) and
X(Jz, Jy). '

We also suggest that the definition of smear Sg = S(J) defined by Eq. (3.4)
with r = (Jz,Jy) (or r = (J1,J2) if there is linear coupling), be adopted for
purposes of comparison among different calculations and/or experiments. This
“standard” smear is insensitive to the shape and orientation of the cluster of
points, and is sensitive only to its overall size. Also, its square is directly amenable

to theoretical calculation. 10!}
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